Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-1): 024201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491618

RESUMO

The theory of stochastic resetting asserts that restarting a stochastic process can expedite its completion. In this paper, we study the escape process of a Brownian particle in an open Hamiltonian system that suffers noise-enhanced stability. This phenomenon implies that under specific noise amplitudes the escape process is delayed. Here, we propose a protocol for stochastic resetting that can avoid the noise-enhanced stability effect. In our approach, instead of resetting the trajectories at certain time intervals, a trajectory is reset when a predefined energy threshold is reached. The trajectories that delay the escape process are the ones that lower their energy due to the stochastic fluctuations. Our resetting approach leverages this fact and avoids long transients by resetting trajectories before they reach low-energy levels. Finally, we show that the chaotic dynamics (i.e., the sensitive dependence on initial conditions) catalyzes the effectiveness of the resetting strategy.

2.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437871

RESUMO

This research addresses the challenge of characterizing the complexity and unpredictability of basins within various dynamical systems. The main focus is on demonstrating the efficiency of convolutional neural networks (CNNs) in this field. Conventional methods become computationally demanding when analyzing multiple basins of attraction across different parameters of dynamical systems. Our research presents an innovative approach that employs CNN architectures for this purpose, showcasing their superior performance in comparison to conventional methods. We conduct a comparative analysis of various CNN models, highlighting the effectiveness of our proposed characterization method while acknowledging the validity of prior approaches. The findings not only showcase the potential of CNNs but also emphasize their significance in advancing the exploration of diverse behaviors within dynamical systems.

3.
Phys Rev E ; 109(1-1): 014203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366401

RESUMO

From a context of evolutionary dynamics, social games can be studied as complex systems that may converge to a Nash equilibrium. Nonetheless, they can behave in an unpredictable manner when looking at the spatial patterns formed by the agents' strategies. This is known in the literature as spatial chaos. In this paper we analyze the problem for a deterministic prisoner's dilemma and a public goods game and calculate the Hamming distance that separates two solutions that start at very similar initial conditions for both cases. The rapid growth of this distance indicates the high sensitivity to initial conditions, which is a well-known indicator of chaotic dynamics.

4.
Chaos ; 33(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048254

RESUMO

We explore the effect of some simple perturbations on three nonlinear models proposed to describe large-scale solar behavior via the solar dynamo theory: the Lorenz and Rikitake systems and a Van der Pol-Duffing oscillator. Planetary magnetic fields affecting the solar dynamo activity have been simulated by using harmonic perturbations. These perturbations introduce cycle intermittency and amplitude irregularities revealed by the frequency spectra of the nonlinear signals. Furthermore, we have found that the perturbative intensity acts as an order parameter in the correlations between the system and the external forcing. Our findings suggest a promising avenue to study the sunspot activity by using nonlinear dynamics methods.

5.
Chaos ; 33(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055719

RESUMO

We have found two kinds of ultrasensitive vibrational resonance in coupled nonlinear systems. It is particularly worth pointing out that this ultrasensitive vibrational resonance is transient behavior caused by transient chaos. Considering a long-term response, the system will transform from transient chaos to a periodic response. The pattern of vibrational resonance will also transform from ultrasensitive vibrational resonance to conventional vibrational resonance. This article focuses on the transient ultrasensitive vibrational resonance phenomenon. It is induced by a small disturbance of the high-frequency excitation and the initial simulation conditions, respectively. The damping coefficient and the coupling strength are the key factors to induce the ultrasensitive vibrational resonance. By increasing these two parameters, the vibrational resonance pattern can be transformed from ultrasensitive vibrational resonance to conventional vibrational resonance. The reason for different vibrational resonance patterns to occur lies in the state of the system response. The response usually presents transient chaotic behavior when the ultrasensitive vibrational resonance appears and the plot of the response amplitude vs the controlled parameters shows a highly fractalized pattern. When the response is periodic or doubly periodic, it usually corresponds to the conventional vibrational resonance. The ultrasensitive vibrational resonance not only occurs at the excitation frequency, but it also occurs at some more nonlinear frequency components. The ultrasensitive vibrational resonance as transient behavior and the transformation of vibrational resonance patterns are new phenomena in coupled nonlinear systems.

7.
Phys Rev E ; 108(2-1): 024203, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723724

RESUMO

A variation in the environment of a system, such as the temperature, the concentration of a chemical solution, or the appearance of a magnetic field, may lead to a drift in one of the parameters. If the parameter crosses a bifurcation point, the system can tip from one attractor to another (bifurcation-induced tipping). Typically, this stability exchange occurs at a parameter value beyond the bifurcation value. This is what we call, here, the shifted stability exchange. We perform a systematic study on how the shift is affected by the initial parameter value and its change rate. To that end, we present numerical simulations and partly analytical results for different types of bifurcations and different paradigmatic systems. We show that the nonautonomous dynamics can be split into two regimes. Depending on whether we exceed the numerical or experimental precision or not, the system may enter the nondeterministic or the deterministic regime. This is determined solely by the conditions of the drift. Finally, we deduce the scaling laws governing this phenomenon and we observe very similar behavior for different systems and different bifurcations in both regimes.

8.
Phys Rev E ; 107(5-1): 054215, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329100

RESUMO

In this paper, we show that the destruction of the main Kolmogorov-Arnold-Moser (KAM) islands in two-degree-of-freedom Hamiltonian systems occurs through a cascade of period-doubling bifurcations. We calculate the corresponding Feigenbaum constant and the accumulation point of the period-doubling sequence. By means of a systematic grid search on exit basin diagrams, we find the existence of numerous very small KAM islands ("islets") for values below and above the aforementioned accumulation point. We study the bifurcations involving the formation of islets and we classify them in three different types. Finally, we show that the same types of islets appear in generic two-degree-of-freedom Hamiltonian systems and in area-preserving maps.


Assuntos
Dinâmica não Linear , Simulação por Computador
9.
Phys Rev E ; 108(6-1): 064205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243436

RESUMO

During recent decades active particles have attracted an incipient attention as they have been observed in a broad class of scenarios, ranging from bacterial suspension in living systems to artificial swimmers in nonequilibirum systems. The main feature of these particles is that they are able to gain kinetic energy from the environment, which is widely modeled by a stochastic process due to both (Gaussian) white and Ornstein-Uhlenbeck noises. In the present work, we study the nonlinear dynamics of the forced, time-delayed Duffing oscillator subject to these noises, paying special attention to their impact upon the maximum oscillations amplitude and characteristic frequency of the steady state for different values of the time delay and the driving force. Overall, our results indicate that the role of the time delay is substantially modified with respect to the situation without noise. For instance, we show that the oscillations amplitude grows with increasing noise strength when the time delay acts as a damping term in absence of noise, whereas the trajectories eventually become aperiodic when the oscillations are sustained by the time delay. In short, the interplay among the noises, forcing, and time delay gives rise to a rich dynamics: a regular and periodic motion is destroyed or restored owing to the competition between the noise and the driving force depending on time delay values, whereas an erratic motion insensitive to the driving force emerges when the time delay makes the motion aperiodic. Interestingly, we also show that, for a sufficient noise strength and forcing amplitude, an approximately periodic interwell motion is promoted by means of stochastic resonance.

10.
Chaos ; 32(6): 063118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778143

RESUMO

We investigate the possibility of avoiding the escape of chaotic scattering trajectories in two-degree-of-freedom Hamiltonian systems. We develop a continuous control technique based on the introduction of coupling forces between the chaotic trajectories and some periodic orbits of the system. The main results are shown through numerical simulations, which confirm that all trajectories starting near the stable manifold of the chaotic saddle can be controlled. We also show that it is possible to jump between different unstable periodic orbits until reaching a stable periodic orbit belonging to a Kolmogorov-Arnold-Moser island.

11.
Eur Phys J Spec Top ; 231(5): 815-818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464296

RESUMO

Complex biorhythms are characteristic of ubiquitous phenomena appearing in many disciplines of human knowledge. This Special Issue collects articles devoted to different complex biorhythms phenomena such as cardiac dynamics, Covid-19 dynamics, dynamics of neural networks, cell dynamics, and a few articles devoted to general methods. It furnishes a rich overview of the field and can stimulate and inspire further researches.

12.
Chaos ; 31(7): 070401, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34340332

RESUMO

This is an introductory paper of the Focus Issue Recent advances in modeling complex systems: Theory and applications, where papers presenting new advances and insights into chaotic dynamics, fractional dynamics, complex oscillations, complex traffic dynamics, and complex networks, as well as their applications, are collected. All these different problems share common ideas and methods and provide new perspectives for further progress in the modeling of complex systems.

13.
Phys Rev E ; 102(4-1): 042204, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212716

RESUMO

The Sitnikov problem is a classical problem broadly studied in physics which can represent an illustrative example of chaotic scattering. The relativistic version of this problem can be attacked by using the post-Newtonian formalism. Previous work focused on the role of the gravitational radius λ on the phase space portrait. Here we add two relevant issues on the influence of the gravitational radius in the context of chaotic scattering phenomena. First, we uncover a metamorphosis of the KAM islands for which the escape regions change insofar as λ increases. Second, there are two inflection points in the unpredictability of the final state of the system when λ≃0.02 and λ≃0.028. We analyze these inflection points in a quantitative manner by using the basin entropy. This work can be useful for a better understanding of the Sitnikov problem in the context of relativistic chaotic scattering. In addition, the described techniques can be applied to similar real systems, such as binary stellar systems, among others.

14.
Chaos ; 30(4): 043128, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32357649

RESUMO

Stochastic resonance (SR) is widely used as a signal enhancement technique in recovering and enhancing periodic or aperiodic signals submerged in noise. However, system parameters and noise intensity tend to influence the SR performance. To achieve better resonance performance, several indices are often used to determine these parameters, including signal-to-noise, amplification factor, and cross-correlation coefficient. Nevertheless, for a linear frequency modulated (LFM) signal, such indices may no longer work and consequently make SR unable to recover the unknown LFM signal from raw signals. Thus, this limits the application of SR to some extent. To deal with this problem, we define here a new index to characterize the unknown LFM signal with the help of the fractional Fourier transform. Guided by this index, SR is thus able to recover the unknown LFM signal from the raw signal. In addition, a cloud model based genetic algorithm is used to achieve an adaptive SR in order to improve the effectiveness of signal processing.

15.
Chaos ; 28(10): 103110, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30384627

RESUMO

The dynamics on a chaotic attractor can be quite heterogeneous, being much more unstable in some regions than others. Some regions of a chaotic attractor can be expanding in more dimensions than other regions. Imagine a situation where two such regions and each contains trajectories that stay in the region for all time-while typical trajectories wander throughout the attractor. Furthermore, if arbitrarily close to each point of the attractor there are points on periodic orbits that have different unstable dimensions, then we say such an attractor is "hetero-chaotic" (i.e., it has heterogeneous chaos). This is hard to picture but we believe that most physical systems possessing a high-dimensional attractor are of this type. We have created simplified models with that behavior to give insight into real high-dimensional phenomena.

16.
Sci Rep ; 8(1): 9954, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967421

RESUMO

Trying to imagine three regions separated by a unique boundary seems a difficult task. However, this is exactly what happens in many dynamical systems showing Wada basins. Here, we present a new perspective on the Wada property: A Wada boundary is the only one that remains unaltered under the action of merging the basins. This observation allows to develop a new method to test the Wada property, which is much faster than the previous ones. Furthermore, another major advantage of the merging method is that a detailed knowledge of the dynamical system is not required.

17.
Phys Rev E ; 97(4-1): 042214, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758743

RESUMO

Chaotic scattering is an important topic in nonlinear dynamics and chaos with applications in several fields in physics and engineering. The study of this phenomenon in relativistic systems has received little attention as compared to the Newtonian case. Here we focus our work on the study of some relevant characteristics of the exit basin topology in the relativistic Hénon-Heiles system: the uncertainty dimension, the Wada property, and the basin entropy. Our main findings for the uncertainty dimension show two different behaviors insofar as we change the relativistic parameter ß, in which a crossover behavior is uncovered. This crossover point is related with the disappearance of KAM islands in phase space, which happens for velocity values above the ultrarelativistic limit, v>0.1c. This result is supported by numerical simulations and by qualitative analysis, which are in good agreement. On the other hand, the computation of the exit basins in the phase space suggests the existence of Wada basins for a range of ß<0.625. We also studied the evolution of the exit basins in a quantitative manner by computing the basin entropy, which shows a maximum value for ß≈0.2. This last quantity is related to the uncertainty in the prediction of the final fate of the system. Finally, our work is relevant in galactic dynamics, and it also has important implications in other topics in physics such as as in the Störmer problem, among others.

18.
PLoS One ; 13(4): e0194926, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29668687

RESUMO

In nonlinear systems long term dynamics is governed by the attractors present in phase space. The presence of a chaotic saddle gives rise to basins of attraction with fractal boundaries and sometimes even to Wada boundaries. These two phenomena involve extreme difficulties in the prediction of the future state of the system. However, we show here that it is possible to make statistical predictions even if we do not have any previous knowledge of the initial conditions or the time series of the system until it reaches its final state. In this work, we develop a general method to make statistical predictions in systems with fractal basins. In particular, we have applied this new method to the Duffing oscillator for a choice of parameters where the system possesses the Wada property. We have computed the statistical properties of the Duffing oscillator for different phase space resolutions, to obtain information about the global dynamics of the system. The key idea is that the fraction of initial conditions that evolve towards each attractor is scale free-which we illustrate numerically. We have also shown numerically how having partial information about the initial conditions of the system does not improve in general the predictions in the Wada regions.


Assuntos
Previsões , Modelos Estatísticos , Incerteza , Algoritmos , Probabilidade
19.
J Theor Biol ; 430: 169-176, 2017 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-28689890

RESUMO

Chemotherapy is a cancer treatment modality that uses drugs to kill tumor cells. A typical chemotherapeutic protocol consists of several drugs delivered in cycles of three weeks. We present mathematical analyses demonstrating the existence of a maximum time between cycles of chemotherapy for a protocol to be effective. A mathematical equation is derived, which relates such a maximum time with the variables that govern the kinetics of the tumor and those characterizing the chemotherapeutic treatment. Our results suggest that there are compelling arguments supporting the use of dose-dense protocols. Finally, we discuss the limitations of these protocols and suggest an alternative.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Modelos Teóricos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Humanos , Farmacocinética
20.
Sci Rep ; 7(1): 2744, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28577339

RESUMO

Time delays may cause dramatic changes to the dynamics of interacting oscillators. Coupled networks of interacting dynamical systems can have unexpected behaviours when the signal between the vertices are time delayed. It has been shown for a very general class of systems that the time delays can be rearranged as long as the total time delay over the constitutive loops of the network is conserved. This fact allows to reduce the number of time delays of the problem without loss of information. There is a theoretical lower bound for this number that can be numerically improved if the time delays are commensurable. Here we propose a formulation of the problem and a numerical method to even further reduce the number of time delays in a network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...